净化水厂连续24小时进水量大值900m3/h、小值465m3/h、平均值703m3/h,来水的氨氮负荷大值200mg/l、小值70mg/l、平均值121.3mg/l,来水中的COD大值720mg/l、小值370mg/l、平均值502.6mg/l。从以上数据得出不论是来水量还是水中污染物负荷高时段的值是低时段的值的二倍或多于二倍。经过分析,其原因是厂内产品生产线多、不同产品生产过程产生的污染物的量及种类复杂,几乎没有规律可循。
由于进水污染物的降解主要是通过微生物的新陈代谢作用完成,当进水水质波动过大,超过微生物的代谢速度时,进水中部分污染物将得不到降解,进而影响出水水质,而仅靠净化水厂的一座5000m3的调节池进行调量、调质是远远不够的。通过论证,采取以下对策:一是利用厂内一座闲置的2000m3水池作为高浓度废水的缓冲池,将甲醇、醋酸、醋酐、尿素等产品生产中产生的生产废水,预先在此池内调质、调量,避免高浓度废水冲击净化水厂生化系统;二是充分发挥净化水厂一座10000m3事故池的作用,在净化水厂运行不正常或化工产品装置生产不正常时,及时将生产废水引入事故池,待生产运行正常后再切至正常流程。
2.2 含醛废水的冲击
在聚甲醛的生产过程中废水产生量约25m3/h,主要来自稀醛回收单元加压脱水塔的排水、甲醛制备单元以及一些受污染地坪的冲洗水和初期雨水;煤制聚甲醛废水中COD浓度变化十分大,这是因为水中含有甲醛、三聚甲醛、二氧五环、甲醇等很多污染物质,而这些污染物质的组分和含量都具有很大的不确定性,此套装置产生的废水中甲醛浓度在500mg/l~2000mg/l。甲醛是一种具有强烈抑制生化反应的化学物质,当系统进水甲醛含量低于100mg/L时,系统不会受到太大影响,没有崩溃的危险,在进水中甲醛含量为173mg/L的条件下,系统经过57h出水水质会严重恶化,有崩溃的危险,必须将含醛废水在进净化水厂前将甲醛浓度降至100mg/l以下。
采取的对策是,将厂内一套处理规模110m3/h的SBR装置专门用于处理甲醛废水。为适应处理甲醛硝化反应时间较长的特点,改造了SBR的鼓风系统、加碱系统,并调整了曝气时长,将每个SBR池曝气时间由4小时延长到7~8.5小时,满足了生化系统的溶解氧量要求。通过以上方式将SBR出水的甲醛含量降到不大于5mg/l,完全满足了净化水厂的进水要求。
2.3 进水、排水色度的控制
醋酸纤维素生产时,在回收、萃取、洗涤工段产生大量废水。废水中的半纤维素衍生物、损失的纤维素醚产品等造成废水色度较高,A/O工艺对降低色度具有一定难度。
为改观出水色度,使用了絮凝脱色剂配合PAM助凝方法(以下简称方法一)、PAC粉末活性炭方法(以下简称方法二)进行了一系列的试验。试验发现,方法二在降低出水色度方面较方法一效果要好,利用方法一出水色度在30~40度,而利用方法二出水色度可以达到20度左右。这是因为,PAC除具有良好的吸附作用外,还具有生物协同作用,其生物协同作用体现在PAC的存在增大了固液接触面积,在PAC表面吸附有微生物细胞、酶、有机物以及氧,所有这些都为微生物的新陈代谢提供良好的环境,从而使吸附的有机物降解,终出水水质大大改善。PAC投资大、运行成本比较高;絮凝脱色剂配PAM具有较高的性价比,处理成本在每立方0.5
石油化工废水存在形式多为乳状液体,与其他废水对比,石化废水中含有较多的油、硫、氨氮、化学需氧量(COD)等有机化学成分,水质复杂且水量大,处理难度系数也大,其主要处理工艺有化学处理法、物理处理法和生物处理法。
1、化学处理法
化学处理法的原理是利用化学作用分离某些被溶解的毒性物质,即在废水中加入某种药剂,改变毒性物质的结构,从而使其毒性消失。例如将胶体颗粒转换为沉淀、将悬浮颗粒转换为固体沉淀等,再通过分离收集污染物。
目前为止,处理废水为便捷有效的方法就是化学处理法。化学处理法包括混凝法(适用于去除废水中的重金属离子)和氧化还原法等。当然,在工业上为了能够高效处理含有不同性质污染物的工业废水,通常将多种处理方法结合使用。例如,在处理浓度较低的含酚废水时可以把混凝法(主要除悬浮物)与氧化还原法(主要除酚)结合使用,这样去除高分子有机物以及重金属就更加高效便捷。
1.1 混凝法
混凝法是通过向废水中加入混凝剂来降低胶体颗粒之间的互斥力,使胶体稳定性受到破坏,胶体颗粒相互碰撞聚沉形成混凝体,而后与水分离以达到净化的目的。该法降低了废水的混浊程度,通常适用于预处理,主要针对细小悬浮颗粒以及胶体微粒,去污效率高达90%,比沉淀法去除悬浮颗粒和胶体微粒的效果更好。
1.2 氧化法
氧化法主要针对无机物和有机物,对于简单无机物来说,氧化与还原是同步进行的,某元素被氧化的必有另一元素被还原;对于有机物来说,由于涉及到共价键,有些电子并不直接转移,而是电子云密度发生改变,氧化还原就相对复杂。氧化法主要包括臭氧氧化和湿化氧化。
臭氧氧化法:以臭氧(通常使用低浓度的氧气或空气)作为氧化剂对废水进行净化消毒处理,适合处理有毒污染物和难降解有机物。臭氧具有不稳定(常温下在水中的分解速度比在空气中更快)、强氧化、腐蚀等特性,能使经其处理的废水达到杀菌、脱色、除臭、降浊的目的。该法不仅操作流程简单,还可以有效改善难降解有机物的可生化性,也没有二次污染;缺点也很明显——臭氧极不稳定,通常需要现场配制,但臭氧只能在高电耗下生产,成本高昂,不经济。
湿化氧化法是指在高压条件下氧化悬浮有机物的过程,该过程在液相中进行。与臭氧氧化相比,湿化氧化反应时间短、装置小、更便捷、资金投入较少,并且氧化速度和处理效率更胜一筹,应用也更为广泛。目前,湿化氧化主要用来处理毒性强、难降解的有机物。
2、物理处理法
物理处理法是通过物理(重力、阻力等)作用或机械力分离、回收废水中的难溶悬浮物,该过程并不改变污染物的性质。物理处理法一般用于废水回收前的预处理,主要目的是去除废水中难降解悬浮物以及毒性物质等。与化学处理法相比,物理处理法去除悬浮颗粒和难降解有机物的效果更好,且操作方便、设备投资少。
物理处理法在工业中广泛应用,包括筛滤法、沉淀法、气浮法、吸附法、膜分离等
2.1 筛滤法
筛滤法的原理是利用介质拦截废水中的悬浮物和胶粒物质,从而除去废水中较大的颗粒物,以免堵塞泵、阀及其他设备。一般适用于混凝或生物处理后废水的处理。
筛滤法的介质主要有筛网、纱布以及微孔管等,常用设备是格栅和栅网。格栅通常由一组斜置在泵站集水池进口处的平行栅条构成;废水处理厂中重要的辅助设施便是格栅。
筛滤通常包括过滤和反冲洗两个阶段:过滤阶段,废水在流经水池、滤料层、承托层时,其中的微小悬浮物和胶体物质被一层层筛选过滤掉,得以净化;而反冲洗阶段,冲洗水流经流程时,滤料层中沉积物随水流流入排水槽,从而排出水池。
2.2 沉淀法
沉淀法是利用废水中悬浮颗粒与水的密度差,借助重力场的作用沉降或上浮,从而实现固液分离。当悬浮物密度大于水的密度时,会发生下沉;悬浮物上浮。
在废水处理中,沉淀法通常用于预处理(例如沉砂池用于去除废水中的无机颗粒),废水进入生物处理构筑物前的初步处理(例如初沉池可去除悬浮有机物,以大大减轻生物处理构筑物的有机负荷),生物处理后的固液分离(例如二次沉淀池用来分离生物处理工艺中产生的活性废泥等)以及污泥浓缩。
2.3 气浮法
气浮法即向废水中通入空气,在水中析出高度分散的微小气泡并以其为载体,使废水中密度相对较小的悬浮污染物(石化油以及疏水性细微固体悬浮物)附着在载体上,克服重力和阻力的作用,当废水水面有大量气泡存在时即表示分离完成。该法主要处理对象是某些直径较小的悬浮固体颗粒;有时为了提高气浮效果,会在废水中加入混凝剂脱稳或投入表面活性剂维持泡沫的稳定。
气浮法一般不用于预处理,主要作为混凝后的中间处理步骤。进行废水处理时气浮进行的条件也很苛刻,被处理的悬浮物周围必须有大量气泡存在,当悬浮颗粒表面呈疏水性时更容易附着在气泡上,随气泡上浮就会更加容易,固液分离效果更好。
2.4 吸附法
吸附法是利用吸附剂对废水中悬浮污染物的吸附作用来净化废水的一种方法。由于存在表面张力使物体表面分子受力不均匀,而固体与液体的不同之处就在于表面分子不能移动,固体分子要想降低吉布斯函数,只能吸附气体分子并使它们停留在其表面。
吸附剂一般选用活性炭、硅藻土以及树脂等具有大比表面积、多孔且亲油性的固体,该类固体吸附能力强且没有针对性,可以吸附大部分悬浮杂物;吸附后的产物需要进行富集处理,可以采用加热吹气等方法。吸附法一般与其他废水处理法结合使用。例如吸附剂活性炭在去除COD、生化需氧量(BOD)以及脱色方面的功能极强,却因为自身再生性差使得吸附污染物的功能下降,工程上通常使用臭氧-活性炭联合处理废水。吸附法具有十分优异的除臭、脱色、溶解有机物等能力,但却因为吸附剂用量较大、吸附周期较短等不足,一般与混凝法、臭氧氧化法结合使用。
2.5 膜分离法
膜分离技术就是利用薄膜材料孔径等方面的不同,使小分子物质能够透过,有选择性地过滤掉一些大分子杂质,从而实现废水净化的一种新型水处理技术。与普通废水处理法相比,膜分离法处理效率明显提高,还具有设备简单、容易调控、节省空间、应用广泛等优点;美中不足的是薄膜操作处理较复杂,因为渗透膜极容易被污染导致自身寿命缩短,操作技术人员要定期对其进行杀菌消毒。
根据发生膜分离现象的推动力的不同,膜处理法主要分为5种,即电渗析法、反渗析法、自然渗析法、超滤法以及液膜技术。这里的渗析技术主要指废水中悬溶质(浮颗粒或胶体微粒)透过渗透膜,而渗透现象主要是溶剂透过渗透膜。根据使用的膜种类的不同,膜处理法又可以分为有机膜处理法和无机膜处理法。
3、生物处理法
生物处理法是在酶的催化作用下,利用微生物的新陈代谢作用使废水中毒性污染物和难降解有机物分解转化为无毒害物质,从而净化废水。与物理处理法和化学处理法比较,生物处理法成本低廉、效率更高,且操作便捷环保。
在我国,生物处理技术主要用于废水的大规模处理,因其经济实用等优点,被应用于各处理领域。但整体来看,生物处理法在采油废水处理领域应用还不广泛,根本原因在于含油废水水质复杂,部分可生化性的难降解有机物如果依旧使用生物处理法便太过牵强。根据微生物繁殖是否需要氧气,该法又分为好氧生物处理法和厌氧生物处理法。
~0.7元。
为使出水色度达到不大于30度的厂控要求,在模拟试验的基础上,对絮凝脱色剂的加药点进行合理分布:一是在厂内醋酐纤维素废水池处设置加药点,二是在净化水厂好氧池和沉淀池处各设置一处加药点,其中好氧池的加药点距其出水口约1/5。通过改造,醋酐纤维素废水池出水色度也降到了50度左右,有效去除40%以上的COD、悬浮物、氨氮等;通过运行经验得知,在好氧池出口1/5处水中易降解的有机物基本上被降解代谢完毕,可利用絮凝剂对难降解的有机物进行吸附,达到降低导致色度有机物的目的;在沉淀池处设置加药点起到降低出水色度的保安作用。
投入絮凝脱色剂后出水指标的变化如图3所示。从图中可以看出,刚开始投加时出水色度在65倍,连续投加一个月出水色度降低明显并且基本稳定到25倍左右。说明改造加药流程并投加絮凝脱色剂及PAM是成功的。